Methylomic trajectories across human fetal brain development.

نویسندگان

  • Helen Spiers
  • Eilis Hannon
  • Leonard C Schalkwyk
  • Rebecca Smith
  • Chloe C Y Wong
  • Michael C O'Donovan
  • Nicholas J Bray
  • Jonathan Mill
چکیده

Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA.

BACKGROUND Epigenetic mechanisms play an important role in prenatal development, but fetal tissues are not readily accessible. Fetal DNA molecules are present in maternal plasma and can be analyzed noninvasively. METHODS We applied genomewide bisulfite sequencing via 2 approaches to analyze the methylation profile of maternal plasma DNA at single-nucleotide resolution. The first approach used...

متن کامل

Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain.

Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of the human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcripto...

متن کامل

The impact of COVID-19 during pregnancy on fetal brain development

The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...

متن کامل

Spatial-temporal atlas of human fetal brain development during the early second trimester

During the second trimester, the human fetal brain undergoes numerous changes that lead to substantial variation in the neonatal in terms of its morphology and tissue types. As fetal MRI is more and more widely used for studying the human brain development during this period, a spatiotemporal atlas becomes necessary for characterizing the dynamic structural changes. In this study, 34 postmortem...

متن کامل

Structural MRI and brain development.

MRI scans provide exceptionally detailed information on how the human brain changes throughout childhood, adolescence, and into old age. We describe several approaches for understanding developmental changes in brain structures based on MRI. Atlas-based “parcellation” methods, for example, measure volumes of brain substructures, revealing how they change with age. Growth curves for different br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2015